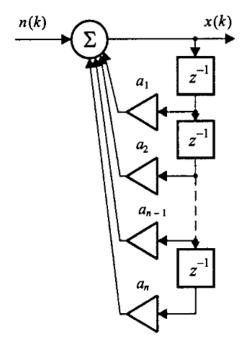
Параметрические методы спектрального оценивания

Авторегрессионная (AR) модель случайного процесса x(k):



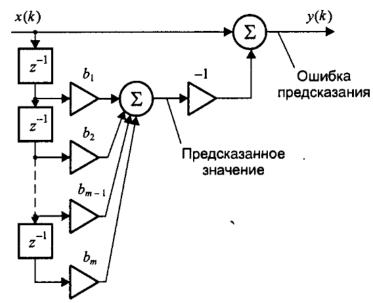
Коррелированный процесс x(k) формируется на выходе «чисто рекурсивного» фильтра при подаче на его вход отсчетов белого гауссовского шума n(k).

Помимо авторегрессионной существуют и другие модели формирования сигнала путем пропускания белого шума через формирующий фильтр. Так, в МА-модели (Moving Average, «скользящее среднее») для этого используется нерекурсивный фильтр, а в ARMA-модели (Autoregressive Moving Average) — фильтр общего вида, содержащий рекурсивную и нерекурсивную ветви.

СПМ авторегрессионного случайного процесса:

$$W(\omega) = \frac{\sigma_n^2}{f_n} \frac{1}{|1 - a_1 e^{-j\omega T} - a_2 e^{-j2\omega T} - \dots - a_N e^{-jN\omega T}|^2}.$$

Требуется оценить порядок модели N, коэффициенты a_i и мощность белого шума σ . Минимизируется ошибка линейного предсказания.



Z-преобразование ошибки предсказания y(k):

$$Y(z) = N(z) \frac{1 - b_1 z^{-1} - b_2 z^{-2} - \dots - b_N z^{-N}}{1 - a_1 z^{-1} - a_2 z^{-2} - \dots - a_N z^{-N}}.$$

Эквивалентное выражение: $Y(z) = N(z) (1 + h_1 z^{-1} + h_2 z^{-2} + ...)$,

откуда
$$y(k) = n(k) + h_1 n(k-1) + h_2 n(k-2) + ...$$

Дисперсия ошибки предсказания $\sigma_y^2 = \sigma_n^2 (1 + h_1^2 + h_2^2 + ...)$.

Минимум дисперсии ошибки предсказания достигается при всех $h_i = 0$.

$$\sigma_y^2 = \overline{y^2(k)} = \overline{x^2(k)} - 2\sum_{m=1}^N b_m \overline{x(k)} x(k-m) + \sum_{m=1}^N \sum_{n=1}^N b_m b_n \overline{x(k-m)} x(k-n).$$

$$\sigma_y^2 = \sigma_x^2 - 2\sum_{m=1}^N b_m R_x(m) + \sum_{m=1}^N \sum_{n=1}^N b_m b_n R_x(m-n).$$

Дифференцируя и приравнивая нулю производную получим систему ур-ний:

$$\frac{\partial \sigma_y^2}{\partial b_k} = -2R_x(k) + 2\sum_{m=1}^N b_m R_x(m-k)$$

$$\sum_{m=1}^{N} b_m R_x(m-k) = R_x(k), \quad k = 1, 2, ..., N.$$

В матричном виде:

 $\mathbf{R}_{x}\mathbf{b} = \mathbf{p}, -$ уравнение Юла–Уокера (Yule–Walker),

где
$$\mathbf{p} = [R_x(1), R_x(2), ...R_x(N)]^T$$
, откуда $\mathbf{b} = \mathbf{R}_x^{-1} \mathbf{p}$,

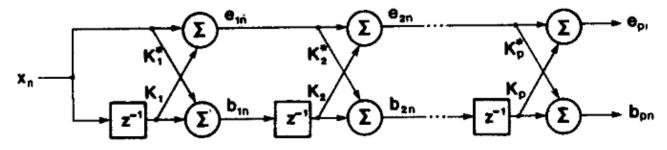
Минимальная дисперсия ошибки предсказания $(\sigma_y^2)_{\min} = \sigma_x^2 - \mathbf{p}^T \mathbf{R}_x^{-1} \mathbf{p}$.

При неизвестных \mathbf{R}_{x} и \mathbf{p} используют их оценки.

Рекуррентный алгоритм решения уравнений Юла–Уокера – алгоритм Левинсона – Дербина (Levinson–Durbin).

Модель процесса скользящего среднего (СС): $x_k = \sum_{i=0}^{M} b_i n_{k-i}$

Модель авторегрессии и скользящего среднего (APCC): $x_k = \sum_{i=0}^N b_i n_{k-i} - \sum_{i=1}^M a_i x_{k-i}$



Решетчатый фильтр для оценки ошибок предсказания вперед e_{pn} и назад b_{pn}

Таблица. Характеристики авторегрессионных методов спектрального анализа

Метод	Достоинства	Недостатки
Юла— Уокера	Хорошие результаты при анализе длинных сигналов. Гарантированная стабильность рассчитанного формирующего фильтра	Плохие результаты при анализе коротких сигналов. При анализе суммы синусоид с шумом получаются смещенные спектральные пики
Берга	Высокая разрешающая способность при анализе коротких сигналов. Гарантированная стабильность рассчитанного формирующего фильтра. Минимизирует ошибки предсказания веред и назад	Положения спектральных пиков сильно зависят от начальных фаз синусоид. При большом порядке модели может наблюдаться расщепление спектральных пиков. При анализе суммы синусоид с шумом получаются смещенные спектральные пики
Ковариа- ционный	Большая (по сравнению с методом Юла—Уокера) разрешающая способность при анализе коротких сигналов. Возможность оценки частот для сигнала, представляющего собой сумму «чистых» синусоид	Рассчитанный формирующий фильтр может оказаться нестабильным. При анализе суммы синусоид с шумом получаются смещенные спектральные пики
Модифици- рованный ковариа- ционный	Высокая разрешающая способность при анализе коротких сигналов. Возможность оценки частот для сигнала, представляющего собой сумму «чистых» синусоид Отсутствие расщепления спектральных пиков. Минимизирует ошибки предсказания веред и назад	Положения спектральных пиков в некоторой степени зависят от начальных фаз синусоид. Рассчитанный формирующий фильтр может оказаться нестабильным. При анализе суммы синусоид с шумом получаются слегка смещенные спектральные пики

Оценка псевдоспектра (частоты и количества гармоник в сигнале)

Метод MUSIC (MUltiple Signal Classification)

Наблюдаемый сигнал – сумма гармоник с белым шумом:

$$x(k) = n(k) + \sum_{m=1}^{M} A_m \exp(j\omega_m kT + j\varphi_m).$$

Его автокорреляционная функция

$$R_x(k) = \sigma_n^2 x_0(k) + \sum_{m=1}^{M} A_m^2 \exp(-j\omega_m kT).$$

 $x_0(k) = 1$ при k = 0 и $x_0(k) = 0$ при $k \neq 0$ — единичная функция. Из отсчетов $R_x(k)$ формируется корреляционная матрица \mathbf{R}_x размером $\mathbf{N} \times \mathbf{N}, \ \mathbf{N} > \mathbf{M}$. Находятся собственные числа и собственные вектора матрицы \mathbf{R}_x .

Собственное число и вектор матрицы ${\bf R}$ -- это такой вектор ${\bf x}$ и число λ , для которых выполняется ${\bf R}{\bf x}=\lambda {\bf x}$ (причем ${\bf x}\neq 0, \lambda \neq 0$). Собственные числа являются корнями характеристического уравнения

$$det(\mathbf{R} - \lambda \mathbf{I}) = 0$$
, где \mathbf{I} – единичная матрица.

Наименьшее собственное число равно σ_n^2 и имеет кратность N–M. Остальные наибольшие M собственных чисел зависят от амплитуд и частот комплексных экспонент.

М собственных вектора - линейные комбинации комплексных экспонент Псевдоспектр метода MUSIC рассчитывается по формуле

$$W(\omega) = \frac{1}{\sum_{k=M+1}^{N} \left| \sum_{n=0}^{N-1} v_k(n) e^{-j\omega nT} \right|^2}.$$

vk(n) – n-й элемент k-го собственного вектора матрицы \mathbf{R}_x

Частоты гармоник находятся из уравнения

$$\sum_{k=M+1}^{N} \left| \sum_{n=0}^{N-1} v_k(n) e^{-j\omega nT} \right|^2 = 0 \qquad \sum_{k=M+1}^{N} \sum_{n=0}^{N-1} \sum_{l=0}^{N-1} v_k(n) v_k^*(l) e^{-j\omega(n-l)T} = 0.$$

Частотами грамоник являются аргументы корней этого уравнения, лежащие на единичной окружности или близкие к этой окружности (при использовании оценок корреляционной матрицы).

Mетод EV (EigenVectors – собственных векторов)

Псевдоспектр рассчитывается по формуле

$$W(\omega) = \frac{1}{\sum_{k=M+1}^{N} \frac{1}{\lambda_k} \left| \sum_{n=0}^{N-1} v_k(n) e^{-j\omega nT} \right|^2},$$

Частоты комплексных экспонент находятся из уравнения

$$\sum_{k=M+1}^N \frac{1}{\lambda_k} \sum_{n=0}^{N-1} \sum_{l=0}^{N-1} v_k(n) v_k^{\bullet}(l) e^{-j\omega(n-l)T} = 0.$$

где λ_k – собственное число соответствующее собственному вектору v_k .

Функции спектрального анализа Matlab

specgram — вычисление мгновенного спектра сигнала; spectrogram(x,window,noverlap,nfft,fs) – новая реализаця specgram periodogram — вычисление спектральной плотности мощности одной реализации случайного сигнала;

[Pxx, f] = periodogram(x, window, Nfft, Fs, 'range')

pwelch — оценка спектральной плотности мощности случайного процесса методом усреднения модифицированных периодограмм.

[Pxx, f] = pwelch(x, Nwin, Noverlap, Nfft, Fs, 'range')

Функция psdplot предназначена для построения графика спектральной плотности мощности: psdplot(Pxx, f, 'units', 'yscale', 'title')

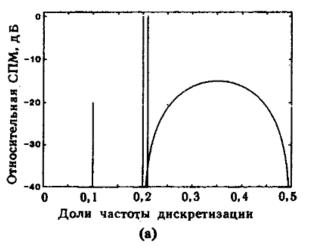
Название метода	Функция расчета коэффициентов модели	Функция спектрального анализа
Ковариационный	arcov	pcov
Модифицированный ковариационный	armcov	pmcov
Берга	arburg	pburg
Авторегрессионный Юла—Уокера	aryule	pyulear

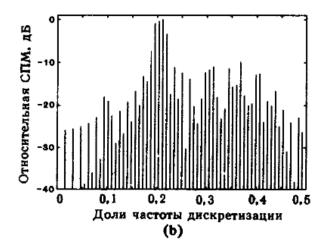
pmusic — расчет псевдоспектра путем анализа собственных чисел и собственных векторов корреляционной матрицы сигнала (метод MUSIC): [s, f, v, e] = pmusic(x, p, Nfft, Fs, Nwin, Noverlap, 'range').

peig – расчет псевдоспектра путем анализа собственных чисел и собственных векторов (метод EV)

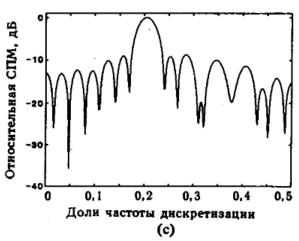
[s, f, v, e] = peig(x, p, Nfft, Fs, Nwin, Noverlap, 'range').

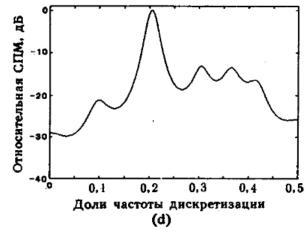
Спектральные оценки для одной и той же 64-точечной последовательности, полученные с помощью различных методов:



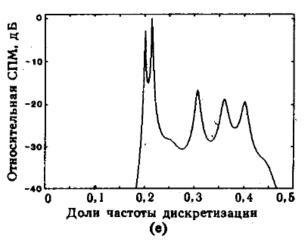


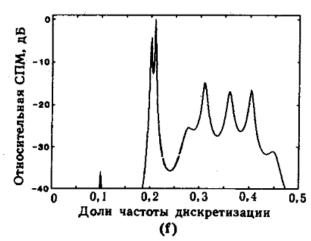
(a) истинная СПМ; (b) СПМ на основе периодограммы (БПФ); число отсчетов, удвоено за счет введения дополнительных нулевых отсчетов;



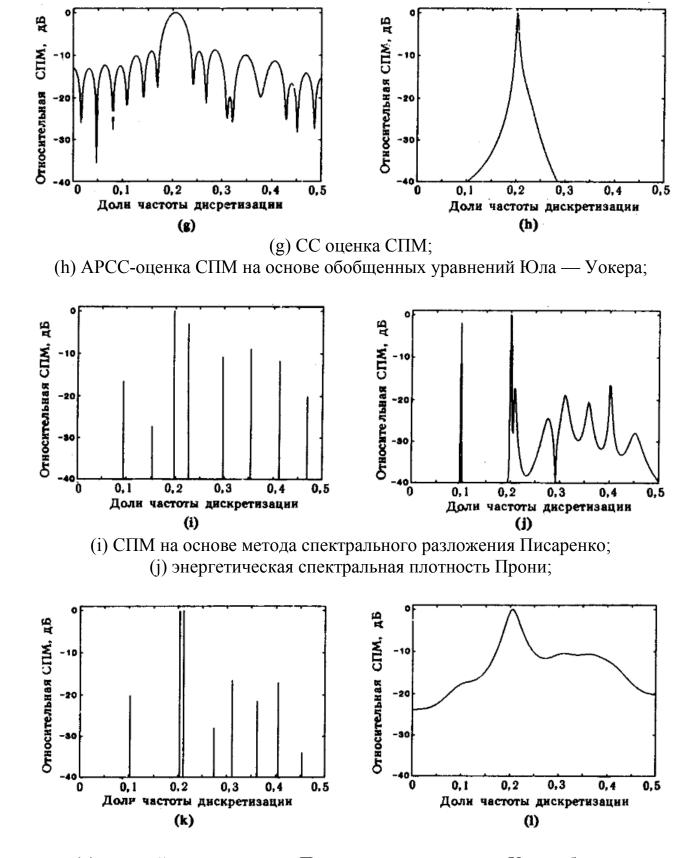


(c) СПМ Блэкмана — Тьюки; (d) АР-оценка СПМ на основе подхода Юла — Уокера;





(e) АР-оценка СПМ с помощью алгоритма Берга; (f) АР-оценка СПМ по методу наименьших квадратов или алгоритма предсказания вперед и назад;



(к) частный вариант метода Прони на основе подхода Хильдебранда; (1) СПМ Кейпона (метод максимального правдоподобия).